If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.5x^2+3x=0
a = -0.5; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-0.5)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-0.5}=\frac{-6}{-1} =+6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-0.5}=\frac{0}{-1} =0 $
| 6u-9=18u-3u+81 | | 6u-9=18u+3u+81 | | 20(x+7)-7=9 | | 2x+3=1/32 | | -18x^2+6400x-430.200=0 | | -18x^2+6400x+-430.200=0 | | x*1.6x=320 | | i+45=56 | | (X+0.25)+x=90 | | 42m+14=28 | | 1.6x*x=320 | | 2v+5/3=3 | | 4.99p+0.65=6.94 | | Y=6x(0.3) | | 2x+1/2=13 | | 5/14=x/7 | | 5/14=7/x | | k=72 | | 5x-19=-27 | | 6a+2-3a=17 | | 3e+3=2e+12 | | 16=4x-22 | | 5r+10-4r=10+r | | 5x-7+2=8x-2 | | (2/5)^x=8/125 | | R-r-10+10=0 | | 7/15c=140 | | 7^x+3+4=11 | | d-86=-69 | | -88=d+65 | | 11=d+17 | | 0.35x+10=0.15x+20 |